Hands-On Math: A page-based multi-touch and pen desktop
for technical work and problem solving

Robert Zeleznik, Andrew Bragdon, Ferdi Adeputra, Hsu-Sheng Ko
Brown University, Providence, RI, USA
{bcz,acb, fadeputr, hsusheng} @cs.brown.edu

e KR

y‘—.

\2 — 2x y = x4+ 2x

e
A

- <%= 2%

-

y=2xX %‘;+2

U - Xo= 2%

2, a2 - |
y=x{3 R

X y =

Figure 1. Math transformation. a) Dragging -x2 across the equality. b) Result with terms highlighted. ¢) Dragging x (from 2x) across other
right-hand side terms factors it and interactively updates the result below. D) Squeezing x2/x simplifies it. €) The final expression.

ABSTRACT

Students, scientists and engineers have to choose between
the flexible, free-form input of pencil and paper and the
computational power of Computer Algebra Systems (CAS)
when solving mathematical problems. Hands-On Math is a
multi-touch and pen-based system which attempts to unify
these approaches by providing virtual paper that is en-
hanced to recognize mathematical notations as a means of
providing in situ access to CAS functionality. Pages can be
created and organized on a large pannable desktop, and
mathematical expressions can be computed, graphed and
manipulated using a set of uni- and bi-manual interactions
which facilitate rapid exploration by eliminating tedious
and error prone transcription tasks. Analysis of a qualitative
pilot evaluation indicates the potential of our approach and
highlights usability issues with the novel techniques used.

ACM Classification: HS5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: gestures, multi-touch, stylus, pages, paper, math.
INTRODUCTION

Problem solving with Computer Algebra Aystems (CAS)
and with pencil and paper each has a number of strengths
and weaknesses, and perhaps as a result, students, scientists
and engineers use both. Paper is inherently bimanual [11],
fluid and open-ended. Paper encourages step-by-step com-
putation, affording insight at the expense of tedious, error-
prone mental computation. Alternatively, CAS tools effi-
ciently provide answers at the cost of complex Uls which
are highly syntactic, rigid and linear. CAS distances the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

UIST’10, October 3—6, 2010, New York, New York, USA.

Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

17

user from key aspects of the problem solving process [7],
such as choosing alternative computational paths or under-
standing computational logic. Transcribing between paper
and CAS provides tedious, error-prone integration but dis-
rupts creative problem-solving. Thus, CAS is often under-
used, not used to its full potential, or foregone entirely [7].

Figure 2. Document and note pages showing recognized

math and embedded computation.
Pen and touch input modalities naturally complement one
another, and have the promise to form the basis for a paper-
like bimanual system [13]. Therefore, our approach is to
create Hands-On Math, a virtual paper/CAS hybrid, which
attempts to combine the fluid, bimanual advantages of
physical pages with the computational power of CAS. Our
core hypothesis is that if CAS tools were driven by direct,
multi-touch manipulation and digital ink within a free-form
note-taking environment, students and even scientists and
engineers might learn and work more efficiently. We note
that virtual objects/pages are not identical to physical
ones[27], but we hypothesize that for paper they are similar
enough for many of the benefits to carry over. Hands-On
Math’s current functionality limits it to high school-level
math, but we believe the approach may apply broadly
across domains and users, and support collaborative work.

Since it is not yet clear how bimanual techniques should be
designed or employed, our approach in this paper is to push
in a number of directions to see which techniques work out
best in the context of a real system. This approach has a
number of advantages: rather than evaluating techniques in
isolation, we can see how they interact in a full system, and
test this functional system with domain users.

The contributions of this paper are:

e The design of a virtual paper/CAS hybrid prototype that
attempts to expose CAS tools fluidly as bimanual pen and
touch operations (Figure 1).

o The design of several synergistic pen and touch tech-
niques that collectively comprise a functionally rich page-
based system capable of supporting domain users per-
forming representative tasks (Figure 2).

e A qualitative pilot evaluation and usability discussion of
the prototype system as a whole, and the novel bimanual
pen and touch techniques developed for it.

RELATED WORK
There have been several efforts to furnish CAS engines
with a handwriting-based front-end. The MathPad” system
focused on a gesture-based UI for creating animated draw-
ings driven by handwritten mathematical expressions but
also included several CAS commands for taking deriva-
tives, integrating, and solving multi-variate equations[19].
The MathPaper system, in addition to providing a gestural
UI for simplifying and solving equations, also allowed ac-
cess to the full functionality of Mathematica by recognizing
its 1D syntax[31]. MathBrush, alternatively, recognized
handwritten mathematics and then provided a menu-based
UI to CAS functionality[18]. Thimbleby explored a novel
calculator UI[28] in which handwritten input is computa-
tionally enhanced as it is written to always show a valid
equality. Our work differs from these works at both a user
interface and a system level: we use multi-touch and pen to
provide a general-purpose enhanced virtual paper metaphor
and we support a multi-touch interface for interactively
manipulating and transforming mathematical expressions.

Anthony’s tutoring work[1] is complementary to ours; for
instance, virtual pages could be used to present structured
tutoring materials, and multi-touch math manipulation
could support additional tutoring interactions.

Also related are systems which explore various page-based
interactions. WeSearch provides a multi-touch web search
interface in which pages can be clipped and organized on a
virtual desktop[23]. Other work explores pressure-sensitive
surface techniques for arranging 2D paper-like objects, for
example, to slide one page underneath another, or to peel
back a page corner to see obscured content[8]. Integrating
this work is a complementary research effort.

In addition, there is a large body of work on pen-based
digital notetaking techniques, including commercial prod-
ucts such as Microsoft OneNote which even supports prim-
itive calculator functionality and handwritten mathematics
recognition, but no real CAS features. InkSeine is a notable

18

research system that provides a virtual notebook with an in
situ pen-based document and web search component[15].
We adopt a basic form of InkSeine’s web searching bread-
crumb technique to harvest page clippings.

Recent research has focused on hybrid touch and pen inter-
actions. Brandl et al examine dynamically altering pen
characteristics when the non-dominant hand is placed flat
on the drawing surface, or bi-manually controlling widgets
such as an undo history tool[6]. In addition, they explored
bi-manual interactions that seamlessly transition from menu
selection to direct manipulation, for example, to perform a
bi-manual rectangular selection. Our related TAP gestures,
however, blend into a virtual page metaphor where it is not
necessarily desirable, for example, to always display a
menu given a non-dominant hand finger contact or to use a
menu-based interaction over a naturally parameterized,
unambiguous gesture. Hinckley et al explored using touch
to define a context for interpreting subsequent pen strokes,
for example, to hold an object with touch and stroke off a
copy with the pen[14]. Instead, we recognize partial pen
gestures and display visual feedforward that can be dragged
to confirm a TAP gesture. Frisch, et al also explore pen and
touch, but not gestures requiring a combination of both[10].
OVERVIEW

Joining mathematical computation with enhanced virtual
paper extends the familiar paper-and-pencil interaction
paradigm to improve workflow and assist conceptual un-
derstanding. Specifically, virtual paper facilitates the en-
capsulation of work products into page-like entities, which,
unlike physical paper, can support ink-driven computations
and can be arranged on a large, pannable virtual desktop.
By recognizing handwritten mathematical expressions and
converting them to manipulable typeset notations, virtual
paper can obviate a range of tedious and error prone inter-
actions, such as when manually performing steps in a deri-
vation. For example, algebraic transformations can be exe-
cuted by pinching, stretching and dragging terms within an
expression. Hands-On Math further provides a suite of ges-
tural techniques for creating and manipulating pages, anno-
tations, diagrams and web clippings. The unifying charac-
teristic of these techniques is how pen and touch combine
to produce efficient interactions that can be robustly recog-
nized without physical buttons, pauses or other delimeters.

Hands-On Math runs on a Microsoft Surface equipped with
an infrared lightpen that can be distinguished from multi-
touch input because of its brightness. Hands-On Math uses
the StarPad SDK[16] to recognize and convert handwritten
math to typeset notations, gesturally create graph windows,
and trigger symbolic and numeric computations with ex-
tended notations. Web queries, written as ink, return anno-
tatable, live web pages. Although Hands-On Math is fully-
functional, it is incomplete since it does not expose any
disclosure techniques for learning multi-touch or pen ges-
tures. However, our preliminary prototypes indicate that a
customized GestureBar [5] may be sufficient.

In the next three sections, we present the novel Ul design

components of Hands-On Math. First we describe the inter-
face to a page-based environment that was designed to sup-
port scalable working sets of documents and notes. Then
we describe a set of lightweight, general-purpose mode
switching and command invocation gestures designed to
robustly augment inking activities. Last, we describe the
core multi-touch Ul for manipulating and transforming
mathematical expressions that are available on all pages.

PAGES AND WORKSPACE

There are two dominant traditional environments for prob-
lem solving — paper and pencil and whiteboards — each with
its own benefits. Whiteboards are convenient because often
entire workflows can be captured without having to per-
form any spatial management; however, they quickly fill up
and cannot be used like a notebook for longer term work-
flows. Paper on the other hand is non-interactive and can
provide no active assistance. Thus, we designed a hybrid
tabletop solution that blends whiteboard-like interactions
with resizable pages that live on a large virtual desktop.
Users can grow existing pages to accommodate complex
problems or pan the desktop to make room for new work.

Beyond basic multi-touch interactions for dragging and
rotating pages with one or more fingers, we designed three
page management interactions, including a virtual desktop
with panning bar, bezel gestures to create and delete pages,
and a page “folding” gesture to make room for more work.
Page Management

To facilitate an exploratory mindset when problem solving,
we wanted to minimize the cost of creating a new virtual
page. We dismissed using dedicated buttons on the display
because we found them to be distracting and had to be in-
conveniently placed to avoid accidental triggering. We in-
stead associate page creation with a bezel gesture[26] (Fig-
ure 3). Our bezel gestures are parameterized by the number
of fingers that cross the bezel and which bezel is crossed.
Swiping two fingers through the left or right bezel, as if
reaching beyond the desktop for a new sheet of paper, cre-
ates a page. Swiping through with one finger pans the desk-
top. The physical distinctiveness of one versus two fingers
along with bezel size enables eyes-free interaction.

[

/

Figure 3. Swiping over bezel with 2 fingers creates a page.

To delete a page, we considered reversing the page creation
gestures (i.e., drag a page off the bezel with two fingers)
but decided such an interaction might conflict with an intui-
tive reaction to just move a page “out of the way” without
deleting it. Moreover, since deleting pages is less important
because of the virtual desktop, we chose a deliberate page
deletion gesture (Figure 4): after dragging a page into the

19

bezel region, a trash can icon appears near where the finger
contact left the screen; by continuing the drag back across
the trashcan, the page is deleted.

[i

Pay
Pay

.

' Y —

Figure 4. Dragging over bezel displays trashcan widget.

Since pages can be manipulated with one or two fingers,
they are subject to accidental manipulation, particularly
when writing, since the palm of the writing hand may be
mistaken as a finger contact. The palm rejection technique
of ignoring large contacts partially addresses this problem,
however, users may also explicitly hold a page steady with
two or more fingers from their non-dominant hand while
writing — similar to how people control physical pages [11].
Panning Bar

To free users from having to worry about what to get rid of
in order to make room for new material, we adapted the
notion of a continuous virtual desktop that was previously
found useful for desktop code development[4]. Unlike
fixed-size desktops, where the clutter of overlapping pages
becomes an interaction burden, continuous virtual desktops
allow users to create more space on demand while preserv-
ing a spatial record of their previous work.

bottom bezel

bottom bezel

Figure 5. Swiping up through bezel with two fingers shows panning
bar; continued dragging pans the desktop.

Although swiping through the bezel with one finger sup-
ports fine-grained panning of the virtual desktop, we want-
ed a complementary technique to facilitate larger scale nav-
igation. After recognizing an upward two-finger swipe
through the bottom bezel, we display an interactive panning
bar (Figure 5). The panning bar displays a live, miniatur-
ized panorama of the user’s workspace that provides a vis-
ual overview of the user’s work history. The currently visi-
ble desktop is always centered under the user’s finger when
the panning bar appears; as the user drags horizontally
along the panning bar, the desktop scrolls correspondingly
to that location. While one hand controls scrolling, the oth-
er hand can grab pages to relocate them within the virtual
workspace. Invoking the panning bar requires a two-finger
swipe to reduce the likelihood of unintentional triggering
which can occur, for example, when leaning over the sur-
face as accidental contacts are made with an arm, shirt, etc.

Folding

As a complement to page management, we use multi-touch
folding gestures to manage space within a page [9]. Thus,
for example, a user may choose to fold away part of a com-
plex derivation in order to simultaneously view the problem
statement and their current step in the derivation without
having to scroll between the two. By pinching in the mar-
gin of a page, users interactively simulate a 3D fold in
which the page buckles up between their fingers (Figure 6),
before collapsing into a suggestive “crease” indicated with
a soft shadow. Tapping the shadow line unfolds the page.

Figure 6. Folding page contents to make space on the page.

Since this technique is intended to support complex work,
it does not actually shorten the page the way a real page
fold would, but instead causes the page contents to slide up
and create open space at the bottom of the page. This op-
eration is akin to code elision techniques in source code
editors except it does not operate on syntactic structures.

GESTURES

Inherent ambiguities exist when trying to decide whether
input is intended to be ink, a gesture or a direct manipula-
tion. To support fluid command invocation and mode
switching, we developed three complementary gesture
techniques which have minimal overlap with other activi-
ties and thus potentially can be robustly recognized.

Under-the-Rock menus

Under-the-rock menus are a general purpose mechanism
for associating contextual actions with display elements. In
essence, they are context menus that are “hidden under the
rock” only to appear when objects (i.e., rocks) are moved.
For example, dragging a term in a mathematical expression
might default to a factoring operation; the under the rock
menu for that term, however, would allow the interaction to
be changed to reordering, term splitting, or something else.

An under-the-rock radial menu grows, after an initial lag,
out from an object’s initial location as the object is dragged
away (Figure 7). Growing a semi-opaque menu from the

4 £
of X
- >

Figure 7. Under-the-rock menus. Dragging the 2 in the 2x factors it from the expression as a semi-opaque radial menu grows. Touch-

start of a drag provides unobtrusive disclosure which is
critical for not interfering with a default dragging behavior.
The menu is only activated and made fully opaque after a
second contact is made over its center; menu items can then
be selected by sliding the second contact over them. An
active menu can be deactivated by sliding the second con-
tact back to the menu center and releasing. Since the menu
appears predictably, centered on the drag’s starting point,
trained users can anticipate this and co-articulate menu
selection with dragging before the menu has become fully
opaque as with marking menus[17]. Depending on manual
dexterity, this interaction can be performed with one hand.

We believe under the rock menus are more appropriate for
math manipulation than bi-manual marking menus which
require two hands to operate and automatically center an
opaque menu over the dragged object[25] which disrupts
default dragging interactions. Similarly, tap-based menus
can be falsely triggered by inadvertent contacts — even
multi-finger tap menus can be triggered pinching and
stretching gestures. We also avoided widgets for invoking
menus because they add visual clutter without resolving the
false activation problem as users by chance may hit a wid-
get when interacting with the backround or nearby object.
Touch-Activated Pen Gestures

Pen gestures are often touted as being well suited for invok-
ing spatially parameterized commands. However, pen ges-
tures are by definition ambiguous with regular inking activ-
ities unless distinguished through special hardware buttons
(e.g., stylus-mounted, or external buttons). In previous
work, a set of pen-only gestures (for scribbling out, select-
ing, graphing and performing undo and redo) was designed
and evaluated to be compatible with writing mathematical
expressions [31]. However, in a general inking context,
loosely defined pen-only commands, such as lasso selection
and scribble deletion, are likely to conflict with regular
inking and thus require additional input for disambiguation.
The technique of requiring terminal punctuation in the form
of a pen tap is workable but comes as pure interaction
overhead since the punctuation contributes nothing to the
specification of the operation or operand [30].

Hybrid pen and touch gestures, however, can be readily
disambiguated from isolated ink and touch activities and
enable fluid direct manipulation transitions. Flow/Control
menus [12] support such transitions but require a mode
switch from inking and require menu selection motions
unrelated to the desired direct manipulation.

ing the menu center makes it opaque and activates it. Selecting the Y icon switches to a slider that splits the 2 into a sum.

20

Start State

Show Widget 1
Match Stem

Gesture 1

Touch
Tracking

Bi-Manual
Tracking

Leave Ink
(no gesture)

Stem Mismatch
Show Widget n

Gesturen

Tracking

Gesture Stem Recognition Module
Figure 8. TAP gesture FSA. Multiple gesture stems can match
and display widgets, but only one gesture can be fired.

Our solution, touch-activated pen (TAP) gestures, recog-
nizes pen gesture stems on-the-fly as they are drawn (Fig-
ure 8). A gesture stem is a non-trivial subset of a complete
pen gesture. Recognizing a gesture stem performs no com-
mand but rather introduces a feedforward widget(s) that can
perform a command if triggered by concurrent touch input.
If the pen stroke ends without touch input or if the stem no
longer matches, the widget disappears. Triggering a TAP
gesture with touch input allows fluid transitions to bi-
manual, pen-only, or touch-only interactions. False recog-
nition of TAP gestures is unlikely if widgets are positioned
away from the hand holding the pen. In addition to im-
proved recognition accuracy, TAP gestures are more scala-
ble than pen-only gestures since a similar or even a single
gesture stem can trigger multiple non-overlapping feedfor-
ward widgets. To avoid the “noise” of unintended feed-
foward during regular inking, all widgets are displayed at
reduced opacity until activated by touch input.

Example 1: Making 2D selections

Although users can lasso ink by drawing an enclosed loop,
there are times when this is inconvenient or inappropriate
such as when selecting large regions of ink or when making
a rectangular image clipping. Thus, we support an addition-
al gestural selection technique: as a user draws a crop mark,
a semi-transparent dashed rectangle appears in registration
with the crop mark (Figure 9). The user can ignore this
rectangle and keep drawing, or by dragging a finger across
it switch from inking to rubber-banding a rectangular selec-
tion marquee. Since the pen and finger-touches control op-
posite corners of the marquee, its position and size can be
adjusted simultaneously [3]. For larger selections, this TAP
gesture also provides the benefit of requiring less move-
ment than a correspondlng lasso would.

el oy S

Figure 9. Drawing a crop marks displays a feedforward selec-
tion/clipping marquee widget. Dragging the marquee while
drawing switches to bi-manual rectangular selection.

Example 2: Inserting space

When problem solving, users often are unable to plan ahead
spatially for their future notations and find themselves in
need of inserting space between existing notations (and
occasionally wanting to remove space). In these cases, they

Accept
State

21

need to specify where and how the space should be created
(e.g., vertically or horizontally, across the whole page or
locally). We provide a TAP gesture for space insertion
(Figure 10): as the user draws a straight line in any orienta-
tion, widgets appear on either side of the line starting point
for selecting the page contents on either side of the line
respectively. If the user ends their ink stroke, the widget
disappears. However, if the user touches either widget, the
drawn ink becomes a “push-bar”. Moving both ends of the
push-bar is like manipulating the top (or bottom) corners of
a picture frame where the page contents below (or above)
the push-bar is the picture. If either contact is released, then
the push-bar only moves its contents along one axis.

K43XF5 ‘ x‘+w+5 ‘ i 4N HS ‘
i =1

r)(;
Figure 10. Drawing a line displays an insert space widget.
Dragging the widget inserts or removes white space.

Example 3: Clipboard pasting

We also provide a TAP gesture for pasting clipboard con-
tents. As a ‘p’ is drawn, we display a paste icon. If the user
taps this icon, the ‘p’ disappears and the clipboard contents
are pasted. If instead the paste icon is dragged, then the
clipboard contents are interactively adjusted to fit within
the boundary defined by the pen and touch contacts.

PalmPrints

Although gestures are efficient for executing many types of
commands, they require significantly more effort than
simply pressing a button. In situations where efficiency is
important, such as when switching between different pen
colors when drawing a diagram or alternating between
math notations and drawing elements, the overhead of per-
forming a path-based gesture (or locating and clicking a
toolbar item) can be burdensome. In such cases, having the
desired functionality on a button beneath one’s fingertips
on the non-dominant hand is both efficient and robust [20].

Custon
=

—

Figure 11. Placing palm and fingers on surface activates
PalmPrint menu. Lifting and tapping a finger changes the
pen mode. Chording is also possible. A Customize palette
allows drag and remapping of functions.

We thus developed PalmPrints which are similar to finger-
tapping techniques [22][21] but which instead activate im-
plicitly when an open hand is placed on the surface (Figure
11) and deactivate when it is lifted to do something else.
While the users palm rests on the surface, up-down finger-
tip transition are recognized to invoke a command associat-
ed with that finger. Identifying each fingertip is done by
sorting the initial five fingertip contacts according to their
radial angle relative to the larger palm contact(s). When a
fingertip contact is lost, we trivially know which finger was
lifted. When all lost contacts are regained (as new con-
tacts), a chord is triggered that executes the commands as-
sociated with each finger that had been lifted.

By associating functionality with each fingertip, users can
execute commands without looking; however, we display
an icon above each fingertip for disclosure (Figure 11).
Dragging and dropping functions from a customization
palette onto an icon reassigns that fingertip’s command.

Alternatively, the user can use their primary hand to “lock”
their PalmPrint on the display. If the user then lifts their
hand after having locked the PalmPrint, the PalmPrint will
transform itself into a five-item toolbar. This toolbar can be
dragged with either hand similar to a Toolglass [3]. The
toolbar can be dismissed with a tap, or it can be restored to
a PalmPrint if the user simply places their hand back down
on the surface in the registration pose.

FingerPose

Since touch-and-drag is preferable to the more heavyweight
bi-manual PalmPrint for common actions such as dragging
a window or panning its contents, we created FingerPose
which selects one of two input modes based on vertical
finger posture. For comparison purposes, we also imple-
mented multi-finger drag alternatives.

‘ Pan
(a) /

(b)

Pan

Drag

Figure 12. Finger posture selects a drag mode. A widget

activated on pause reveals functionality and thresholds.
FingerPose estimates the posture of a finger based on initial
contact geometry to select between two manipulation func-
tions (Figure 12). By using one-finger FingerPose for win-
dow dragging, and content scrolling, and two-finger pinch-
ing for zooming, each function is isolated and inadvertent
manipulations are unlikely. Alternatively, using two-fingers
for both zooming and panning (e.g., MacBook UI) affords
seamless transitions and requires less physical dexterity.

FingerPose is similar to approaches which analyze surface
contacts to determine finger orientation parallel to a touch
surface[29] and to recognize the individual finger poses of
a compound simulated button press[2]. However, Fin-
gerPose is well suited for repeat interactions and omni-dir-
ectional dragging since, unlike SimPress[2], it requires no
initial finger movement for activation. The fingertip pos-

22

ture is recognized as a contact with a physical area below a
calibrated threshold, otherwise a finger pad contact is rec-
ognized. Since contact area is dynamic, particularly just
after the finger touches the surface, we do not distinguish
between poses until after the contact has moved by 25 pix-
els. In addition, if the contact has not moved after 100ms,
we display a dynamic 3D representation of the recognized
“posture” and its associated function. Finger posture is ig-
nored after dragging begins.

FingerPose recognition works without calibration which
can be problematic for users with small fingers or a soft
touch; however it was sufficient for pilot study evaluation.
More robust recognition is possible with additional sensing.
MATH

Using existing SDKs [31], we support math-specific inter-
actions for writing mathematical expressions, computing
values with extended mathematical notations, and creating
graphs with gestures. In addition, we extended this work
with a suite of multi-touch interactions for transforming
mathematical expressions both to compute solutions and to
gain insight on the problem domain and the process of
solving problems — concerns that apply equally to students
and experienced mathematicians[7]. From a mathematics
perspective, our goal was to extend the functionality of
previous pen-based math systems to support algebraic ma-
nipulations that are fundamental to mathematical reasoning
but which are generally hidden by CAS systems. Although
pen-based manipulation techniques are possible, we felt
that multi-touch interactions were more suitable for the
manipulation nature of mathematical transformations. Un-
like pen interactions, which inherently conflict with writing
mathematics and require a compound selection/manip-
ulation interaction, multi-touch gestures have the promise
of integrating selection with manipulation in a single,
memorable and efficient physical action. For example, to
join two additive terms, users can just pinch them together;
a hypothetical pen-based counterpart would need to select
terms and indicate the join operation (and not conflict with
the entry of new math notations) before initiating direct
manipulation feedback. Nonetheless, the set of possible
mathematical operations is large, requiring subtlety to in-
crease the expressiveness of multi-touch manipulation.

Fingertip Area Selections

Tapping an expression activates it for manipulation, and

increases its font size to facilitate syntax-aware, contact

area-based selection[24]; touching a symbol selects it sub-

ject to convenience shortcuts based on how the fingertip

contact regions intersect mathematical symbols (Figure 13).
a b

2X+3yz-w ZX+3yz-w ZX+3yzZ-w

2XH3YZ-W 2¥53yZ-w 2%+3y2Z-V
c% d@ c@ qb

Figure 13. Fingertip area selection: a) one symbol; b) two sym-
bols by touching both; c) term by touching operator; d) neighbor-
ing terms by touching part of one and operator; €) a long span.

Touch Manipulations

The interface for performing mathematical transformations
consists of sequences of pinch, drag, and stretch direct ma-
nipulations of terms within an expression (Figure 1), as
summarized in Table 1. The associated algebraic transfor-
mations are naturally parameterized by where the terms are
dragged. Thus, to preserve context, we do not modify the
touched expression directly. Instead, “ghost” copies of just
the touched symbols follow the user’s finger contacts while
the resulting transformed expression interactively updates
below the original. However, there are more math trans-
formations than unique input affordances. To avoid the
disruption of an explicit mode switching UI, we select dif-
ferent default manipulations based on what was touched.
For example, by default dragging an operator reorders the
term on its right, whereas, dragging a variable(s) succes-
sively factors it from the expressions it passes over. During
all manipulations, an under-the-rock menu grows out from
the original location of the dragged symbol — when needed,
this menu can override the default manipulation. The lim-
ited expressivity of touch input makes it easy to start “play-
ing with math” but also demands the adoption of interac-
tion strategies. For example, to simplify x+y+x,0one x must
be moved next to the other before a pinch can join them.

w aby=1 abirx=1
reorder xab=1 x+ab=1
«—m =1 'il.) tx+c =b1
N yy2 = a
factor out xx“=1 x (_ + 1) +c=1
x
ab+x =1 g ab+x=1 dropbelow =’
R
transposition 1 ; X 1
=] X = - apb — T e—
drop below ‘= ab ab
—p X+ 2% «—
split as ab+p=1 on join r _
division ab + F =1 factors o
L sin? ros2
)_l_(},w‘ smx+:i\:x
simplify st 4 \ 1
y=2x
(A D h2) x?4+2x+1 x=3
distribute ' 2 + x+2 substitue)
4 ’ 32+2-3+1 x
«—Jx+2y—> x31
split Tod " 1 split into 7 {_t
fractions E’z_y_l sum +(2-m))x+1
S

Table 1. Multi-touch algebraic identity transformation UI.
Manipulated terms are highlighted in red. Resulting expres-
sions are shown below with modified terms in green.

Although users may enjoy learning the math transformation
Ul by playfully exploring “what happens if” scenarios, a

23

technique such as GestureBar [5] could provide additional,
more efficient, disclosure of functionality and strategies.
Visual Feedback

Since the structure of an expression may change signifi-
cantly as the result of a single transformation, we did not
feel that it was possible to show the results of a transfor-
mation in-place with the original expression. In addition,
since a transformation may produce a result that is structur-
ally quite different, we felt that it was important to leave a
visual trail that would explicitly show what happened in a
transformation step. Thus, as users manipulate a term, the
resulting transformation is displayed directly below. We
use an arrow-like visualization in combination with colori-
zation and shading cues to depict how terms have changed
from one transformation step to the next (Figure 1).

PILOT EVALUATION

To gain insight into the utility of Hands-On Math for do-
main users and to gain feedback regarding its techniques
and features, we conducted a pilot evaluation.

We recruited 9 participants (aged 18-24; mean age: 20.7;
SD: 1.79; 2 female; 8 right-handed) from the undergraduate
student population of Brown University. Participants were
required to use mathematics to support their coursework
(e.g. a physics class). We believe undergraduate students
are representative of the potential user population because
they use mathematics to support their coursework and stud-
ies on a regular basis. Participants were compensated.

Participants first completed a pre-questionnaire. Partici-
pants were then read an introductory statement that intro-
duced them to the study, and asked to think aloud during
the tasks they would be working on. Due to the dependence
of our system on a large and expensive Surface, and other
hardware limitations (e.g., the infrared light pen is some-
times mistaken for touch input and produces ink at a low
sampling rate making some gestures unreliable), we chose
to do a lab study. We instructed participants to ignore mi-
nor bugs/glitches where possible, as our goal was to evalu-
ate the system design rather than the implementation.

Users were asked to complete a set of exploratory tasks:

¢ Creating and manipulating pages
o Performing a back-of-the-envelope calculation
e Solving a more complex math expression by perform-
ing a multi-step derivation
e Graphing an equation and manipulating the graph
e Using the PalmPrint to change modes and drawing an
annotated diagram in different colors of ink
e Web clipping
e Manipulating the contents of a page with TAP gestures
and page folding
Participants were permitted to perform additional actions to
“play” with the system or to describe a thought they wanted
to express. Since the system is not yet designed for self-
disclosure, they were assisted with usage when needed.

At the completion of the study (which lasted approximately
45 minutes), participants completed a post-questionnaire.

OBSERVATIONS

Participants were overall very positive about the potential
of the system although there was a strong sentiment that the
system might be more widely used if it were available in a
portable form factor, such as a Tablet PC, or at least on a
more ergonomic drafting table display that would make it
easier to reach across the screen. In this section, we report
specific details of their interactions with system features.
Pages

Participants appeared to experience little difficulty manipu-
lating and writing on pages, as several participants picked
up the stylus and began adjusting the paper and writing
without instruction. When asked how the virtual pages
compared to normal paper, all participants reported that it
felt natural despite the awkward light pen used for the ex-
periment. One user was unsure of whether he could place
his hand on the page while writing, but all others seemed to
write naturally. In addition, users were enthusiastic about
the panning bar and played with it longer than needed to
perform the requested tasks. Several participants spontane-
ously remarked that it was “cool” and that it would help
them organize their pages into distinct regions.

However, we also observed that participants experienced
initial difficulty with the page creation and deletion inter-
face. Not surprisingly, no one discovered the bezel Ul
without instruction and some participants needed several
attempts before remembering that two fingers were re-
quired to create a new page. Also, instead of performing the
delete gesture as a single fluid motion, most users did it in
two steps by first dragging the page partly off-screen and
then lifting and tapping on the trashcan icon that appeared.

Paper folding, which was only enabled at the end of the
experiment, received mixed reviews. Some users thought it
would help them make space on a page, while others did
not feel that they needed such a feature. Several users
commented that they did not feel that pinching was precise
enough for them to accurately select the region that they
wanted to collapse and suggested that a TAP gesture would
allow them to draw precise boundary lines that could be
confirmed as a fold with a pinch gesture.

Gestures

Since no mechanism was provided for gesture discovery,
all participants required explanation for how to perform
gestures. Verbal descriptions often were misinterpreted
whereas a single hands-on demonstration was sufficient.

TAP gestures received mixed reviews from study partici-
pants. Several participants noted that using two hands to
perform an action seemed unnatural and thought that a uni-
manual technique would be preferable. In the case of the
two selection gestures, participants generally noted that
simple lassoing seemed more natural and would be used
predominantly, although two thought that rectangle select
would be more efficient. Participants also agreed that the
rectangle selection TAP gesture would be best for making
precise selections, such as when cropping an image. The
fact that all selection gestures were simultaneously availa-

24

ble was considered a plus since there was no perceived cost
to having the extra gestures despite the fact that TAP ges-
tures generate feed-forward. However, in the case of the
space insertion gesture, participants were enthusiastic and
eagerly explored different ways to manipulate their ink.

The PalmPrint technique was particularly sensitive to hand
posture in order for contacts to be generated for the palm
and each finger using the Microsoft Surface SDK. Several
users placed their hand flat on the surface and needed
prompting to arch their hand because the SDK would not
generate thumb contacts in particular. No participant re-
ported any discomfort when asked to successively lift and
tap each of their fingers, although two noted that lifting the
ring finger was difficult. When asked how they felt about
having their hand on the surface when drawing, only one
participant noted a preference to keeping their hand off
screen. All participants were comfortable switching be-
tween red, green and blue ink without looking, although
they all thought that being able to customize the function
mapping for each finger was a useful feature. One partici-
pant suggested that it might be more convenient to have
different function “palettes” instead of customizing each
finger one at a time. Several participants noted that the
PalmPrint would work well when switching modes fre-
quently, for instance to change colors in a drawing, but that
the feature of having it collapse into a tool palette when the
palm was lifted would be more useful when making occa-
sional mode switches. No participant indicated a preference
for dragging the tool palette as a toolglass. Several thought
that it was nice that they could “re-snap” the tool palette by
simply placing their palm anywhere on the surface.

When contrasted with using two fingers to pan graph con-
tents, finger posture was generally considered more diffi-
cult to remember and perform. Users seemed to exaggerate
the instruction to use their fingertip by rotating their hand
into unnecessarily awkward positions. The feedback widget
showing the recognized posture was well received as users
wanted to find the transition point between finger tip and
finger pad. After a brief introductory period, participants
seemed to control their posture without difficulty which
indicates it may be useful as an additional mode.

The under the rock menu initially appeared to induce un-
natural hand positions. Some participants dragged terms
across their body and thus had to cross their hands to reach
the menu; others tried to find ways to access the menu with
the same hand they used to drag a term. In both cases, addi-
tional instruction about how to efficiently use the menu
with one or two hands appeared to resolve the difficulty.
Once learned, however, all participants found the technique
to be convenient with only one suggesting that it could be
improved by allowing the dragged term to be released as
soon as the menu was activated (our implementation treated
the menu as a modifier of the initial finger contact and dis-
appeared when the initial contact was released). Users
overall did not find the semi-transparent menu to be dis-
tracting, although one noted that it took “getting used to.”

Math

Participants reported that the ability to manipulate mathe-
matical expressions with simple manipulations would be
very useful to them when doing math-related work — they
liked the idea of working step by step and not just being
given an answer. Participants were unanimous in noting
that being able to manipulate math would both save them
time and would help them avoid being confused by tran-
scription errors. Several commented that manipulating
math would help them to explore possible transformations
when they were unsure of the next step. All participants
found that being able to seamlessly write mathematics and
then create and explore its graphical representation was
very powerful. However, some participants felt that multi-
touch dragging and zooming were insufficient and that we
needed mechanisms for “resetting” the graph domain and
range and for automatically choosing “good” bounds. We
were surprised that despite the very poor quality of the light
pen that we provided, participants could write math that
was generally correctly recognized.

In terms of functionality, some participants wanted higher-
level operations than simple algebraic transformations, with
one requesting us to support all of Mathematica. Since
StarPad already can use Mathematica for computation, add-
ing additional math functionality is quite feasible. All par-
ticipants thought that the ability to simplify equations and
compute values would be very useful, although some wor-
ried that notations written on one page might affect compu-
tations on another and were satisfied when informed that
expressions were scoped to their page.

DISCUSSION AND FUTURE DIRECTIONS

Our central hypothesis, that people would learn and work
more efficiently if CAS functionality were available in a
paper-like environment, was not contradicted by our evalu-
ation. There seemed to be unanimous agreement that math-
ematical problem solving is most naturally driven by an
unconstrained handwriting-based UI, but that paper and
pencil, despite being the tool of choice, suffers from requir-
ing tedious and error prone transcription and from failing to
provide basic computational assistance needed to avoid
making “stupid mistakes.” The ability of our system to
support free-form note taking, symbolic and numerical
computation, graphing, and function transformation all
“without” a Ul led participants to conclude that the system
has “great potential.” The most significant perceived obsta-
cle to adoption was the bulky, non portable form factor of
our Microsoft Surface hardware and the low quality of light
pen input, as compared to physical pens or even Tablet PC
ink. It was also clear that extending the set of possible
mathematical operations should be a high priority. We also
feel important recognition techniques still need to be ad-
dressed, for example, to interpret math written on angled
baselines, to automatically distinguish mathematics nota-
tions from diagrams and free-form inking, and to recognize,
anchor and track annotations of typeset terms and symbols.

25

Page metaphor. We also found that the choice of using ma-
nipulable pages as a primary Ul element, as opposed to a
whiteboard or book metaphor, appeared to provide a viable
alternative to explicit grouping as an organizing principle.
Users seemed to have a strong, a priori sense of how to
organize information with pages. They expected math writ-
ten on one page to be in the same computational scope, and
distinct from math written on other pages. They had strong
feelings about wanting to grow pages to add related infor-
mation and to use a new page to enter logically different
information. Being able to fold pages to make more space
seemed natural and “cool” to most participants; however,
many felt that a pen-based technique was needed to pre-
cisely define the pinch boundaries while also admitting
they might not need folding functionality very often. Alter-
natively, users were captivated by the panning bar, identify-
ing it as a convenient tableau for collecting informal collec-
tions of pages and addressing the desire to spread a work-
ing set of pages out beyond the limited dimensions of the
display surface. Pages also provided a natural work unit in
which users could explore a problem, then discard the page
if they were off-track, or push it aside to use a new page
when handling an interruption. We expect that pushing the
page metaphor more, for example, to flip, curl, staple, hy-
perlink, or embed pages may reap benefits.

Sandwich Problem. With regard to specific UI choices, we
were somewhat surprised to find that users were not in-
clined to be receptive to bi-manual interaction. We summa-
rize their reticence as the sandwich problem in which par-
ticipants felt that it was unnatural to require bi-manual in-
teraction since their other hand might be doing something
else, like holding a sandwich. We interpret this to mean that
users are not only concerned with actually using their other
hand to do something else but they also were concerned
that they might want to do something with their other hand
besides improve a manipulation they could do almost as
well with one hand. In essence, if the effort expended on
bi-manual interaction appears to greatly exceeds any per-
formance benefit gained, then uni-manual interaction may
be preferred. It is possible bimanual gestures take “getting
used to” and so it may be appropriate to always have uni-
manual alternatives to ease the learning curve and to ad-
dress the sandwich problem.

Recognition. Counterbalancing the sandwich principle
somewhat, we observed that the most likely gestures to be
misrecognized were those that required either multi-touch
or pen input, but not both. Hybrid TAP gestures were not
accidentally triggered during the evaluation. However,
largely due to the poor quality of the pen used, there were
occasions when a TAP gesture stem was not recognized
causing ink to be left on the display. Thus we expect that it
may be important to increase recognition latitude of the pen
part of a TAP gesture, perhaps in response to sensing a
hand hovering over the display, and/or to develop efficient
recovery techniques when the pen stem is not recognized.

Physical skill. We also found it notable that different users
employed different, often inefficient, physical strategies
when performing gestures. When shown a more efficient
technique, they were almost instantly able to improve their
performance, in many cases having an “Aha” moment. For
example, switching between finger tip and finger pad
touching requires only the bending of the second joint of
the index finger; however many users adopted awkward
poses such as fully extending the index finger and rotating
their arm to be perpendicular to the surface. Similarly,
when switching from writing ink with a stylus to dragging
terms with their finger, several users tried to find a place to
put the stylus on the table instead of tucking it up in their
palm. Several users noted that they would like to use under
the rock menus with one hand, but did not figure out on
their own that this could often be accomplished more easily
with the index and forefinger instead of the thumb and in-
dex finger. Thus, we expect that pen and multi-touch tech-
niques may require more sophisticated and in-depth disclo-
sure mechanisms than pen only gestures, for instance.

Disclosure and entrenchment. Even though multi-touch in-
put is relatively new, it seemed clear that some techniques
have already become entrenched and others were harder to
discover and master. For example, several users had trouble
considering finger posture as an option for panning a graph
because they felt that two-finger dragging was the de facto
scrolling standard based on their experiences with Mac-
Books. They also considered their experiences with
iPhones and MacBooks where all touches are equal. Thus
extending disclosure techniques like GestureBar for surface
interaction is worthy area for future research.

CONCLUSION

We presented a prototype system, Hands-OnMath, which
reduces the barriers to accessing computational assistance
during math problem solving by unifying CAS functionali-
ty with a virtual paper UL This system contributes novel bi-
manual and gestural techniques for managing and writing
on virtual note pages in addition to direct manipulation
techniques for algebraically transforming mathematical
expressions. Pilot studies indicate that, after refinement, a
mature version of Hands-On Math would be a desirable
tool for scientific and academic note-taking and ideation.

ACKNOWLEDGMENTS

Thanks to Andries van Dam for his guidance and to Mi-
chael Haller, Christian Rendl, Jakob Leitner, Florian Pert-
eneder, Alexandra Feldman and Nicholas Sinnott-
Armstrong for stimulating discussions and code support.
Thanks to Microsoft, Inc., for their sponsorship and to Ken
Hinckley, Daniel Wigdor and Joseph LaViola, Jr. for tech-
nical support. This material is also based upon work sup-
ported under a National Science Foundation Graduate Re-
search Fellowship and in part by NSF grant I1S-0812382.

REFERENCES

1 Anthony, L, Yang, J, and Koedinger, K. Adapting Handwriting Recog-
nition for Applications in Algebra Learning. International Workshop
on Educational Multimedia and Multimedia Education (2007).

2 Benko, H, Wilson, A, and Baudisch, P. Precise Selection Techniques
for Multi-Touch Screens. UIST (2008), 77-86.

3 Bier, E, Stone, M, Pier, K, Buxton, W, and DeRose, T. Toolglass and
magic lenses: The see-through interface. Siggraph (1993), 73-80.

4 Bragdon, A, Zeleznik, R, Reiss, S et al. Code Bubbles: A Working Set-
based Interface for Code Understanding and Maintenance. CHI (2010).

5 Bragdon, A, Zeleznik, R, Williamson, B, Miller, T, and LaViola, Jr., J.
GestureBar: improving the approachability of gesture-based interfaces.
CHI (2009), 2269-2278.

6 Brandl, P, Forlines, C, Wigdor, D, Haller, M, and Shen, C. Combining
and measuring the benefits of bimanual pen and direct-touch
interaction on horizontal interfaces. AVI (2008), 154-161.

7 Bunt, A., Terry, M., and Lank, E. Friend or foe?: examining CAS use
in mathematics research. In Proceedings of CHI'09 (), 229-238.

8 Davidson, P and Han, J. Extending 2D Object Arrangement with
Pressure-Sensitive Layering Cues. UIST (2008), 87-90.

9 Elmgqvist, N, Henry, N, Riche, Y, and Fekete, J. Melange: space
folding for multi-focus interaction. CHI (2008), 1333-1342.

10 Frisch,M, Heydekorn,J, and Dachselt,R. Investigating Multi-Touch and
Pen Gestures for Diagram Editing on Interactive Surfaces. /7S (2009).

11 Guiard, Y. Asymmetric Division of Labor in Human Skilled Bimanual
Action: The Kinematic Chain as a Model. The Journal of Motor
Behavior, 19, 4 (1987), 486-517.

12 Guimbretriere, F, Martin, A, and Winograd, T. Benefits of Merging
Command Selection and Direct Manipulation. ACM Transactions on
Computer-Human Interaction (2005), 460-476.

13 Hinckley, K., Pahud, M., and Buxton, B. Direct Display Interaction via
Simultaneous Pen + Multi-touch Input. In Proceedings of SID'09 ().

14 Hinckley, K, Pahud, M, and Buxton, B. Direct Display Interaction via
Simultaneous Pen + Multi-touch Input. Proceedings of Society for
Information Display (2010).

15 Hinckley, K, Zhao, S, Sarin, R, Baudisch, P, CutrellLE, Shilman,M, and
Tan, D. InkSeine: In Situ Search for Active Note Taking. CHI (2007).

16 http://pen.cs.brown.edu/starpad.html.

17 Kurtenbach, G and Buxton, W. The limits of expert performance using
hierarchic marking menus. CHI (1993), 482-487.

18 Labahn, G, Lank, E, MacLean, S, Marzouk, M, and Tausky, D. Math-
Brush: A System for Doing Math on Pen-Based Devices. [4PR Inter-
national Workshop on Document Analysis Systems (2008), 599-606.

19 LaViola, Jr., J and Zeleznik, R. MathPad2: A System for the Creation
and Exploration of Mathematical Sketches. SIGGRAPH (2004).

20 Li, Y, Hinckley, K, Guan, Z, and Landay, J. Experimental analysis of
mode switching techniques in pen-based user interfaces. CHI (2005).

21 Malik, S, Ranjan, A, and Balakrishnan, R. Interacting with large
displays from a distance with vision-tracked multi-finger gestural
input. UIST (2005), 43-52.

22 Matejka, J, Grossman, T, Lo, J, and Fitzmaurice, G. The Design and
Evaluation of Multi-finger Mouse Emulation Techniques. CHI (2009).

23 Morris, M, Lombardo, J, and Wigdor, D. WeSearch: Supporting
Collaborative Search and Sensemaking on a Tabletop Display. CSCW
(2010), 401-410.

24 Moscovich, T. Contact Area Interaction with Sliding Widgets. UIST
(2009), 13-22.

25 Odell, D, Davis, R, Smith, A, and Wright, P. Toolglasses, Marking
Menus, and Hotkeys: A Comparison of One and Two-Handed
Command Selection Techniques. Graphics Interface (2004).

26 Roth, V and Turner, T. Bezel swipe: conflict-free scrolling and
multiple selection on mobile touch screen devices. CHI (2009).

27 Terrenghi, L. Affordances for manipulation of physical versus digital
media on interactive surfaces. CHI (2007).

28 Thimbleby, W. A novel pen-based calculator and its evaluation.
NordiCHI (2004), 445-448.

29 Wang, F, Cao, X, Ren,X, and Irani,P. Detecting and Leveraging Finger
Orientation for Interaction with Direct-Touch Surfaces. UIST (2009).

30 Zeleznik, R and Miller, T. Fluid inking: augmenting the medium of
free-form inking with gestures. Graphics Interface (2006), 155-162.

31 Zeleznik, R, Miller, T, Li, C, and Laviola, Jr., J. MathPaper:
Mathematical Sketching with Fluid Support for Interactive
Computation. Smart Graphics (2008), 20-32.

