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ABSTRACT 

We present Code Space, a system that contributes touch + air 

gesture hybrid interactions to support co-located, small group 

developer meetings by democratizing access, control, and 

sharing of information across multiple personal devices and 

public displays. Our system uses a combination of a shared 

multi-touch screen, mobile touch devices, and Microsoft Ki-

nect sensors. We describe cross-device interactions, which use 

a combination of in-air pointing for social disclosure of com-

mands, targeting and mode setting, combined with touch for 

command execution and precise gestures. In a formative study, 

professional developers were positive about the interaction 

design, and most felt that pointing with hands or devices and 

forming hand postures are socially acceptable. Users also felt 

that the techniques adequately disclosed who was interacting 

and that existing social protocols would help to dictate most 

permissions, but also felt that our lightweight permission fea-

ture helped presenters manage incoming content. 

ACM Classification: H5.2 [Information interfaces and 

presentation]: User Interfaces.
 
- Graphical user interfaces. 

General terms: Human Factors 

Keywords: Touch, depth camera, mobile devices, cross-

device interaction, development teams 

INTRODUCTION 

Development teams routinely hold co-located, small group 

meetings to assign and prioritize work and to make deci-

sions [1] [2]. Unfortunately, the common use of laptops and 

projectors coerces social interactions into a single presenter 

style. To address this, we introduce Code Space, a system 

to support these meetings by democratizing access, control, 

and sharing of information across multiple personal devices 

and public displays. Our meeting space, shown in Figure 1, 

surrounds a shared, multi-touch wall display. The system 

uses two Kinects to sense in-air gestures and user locations 

and movements. One is directed toward people at the 

shared display, the presenters; the other is directed at the 

other attendees, the audience, and their personal devices. 

To support cross-device interactions in such a space, we 

explore touch + air gesture hybrid interactions that combine 

in-air pointing/gesturing and postures, physical proximity, 

direct-touch input, and motion sensing input. We believe that 

simple, fluid cross-device interactions have the potential to 

address many of the democratic access and sharing problems 

developers face today. Our priority is to make these interac-

tions socially acceptable in a business context, something we 

believe contemporary air gestures alone do not achieve. 

 

Fig. 1. Code Space meetings include shared multi-touch 
displays, depth cameras, mobile devices and cross-device 
interaction  

The following scenarios illustrate the utility of touch + air 

gesture hybrid interactions. As a first example, an audience 

member can remotely interact with the shared display by 

pointing at it with his touch-enabled phone, like a remote. 

Using a depth camera, we compute a trajectory to display a 

cursor on the shared display. The user can move items on the 

display by touching down on the phone‟s touch screen to 

drag and releasing contact to drop. Our permanent sharing 

technique combines in air pointing for mode and operand 

input, with a touch gesture on a separate device, e.g. a smart 

phone, to confirm and complete the sharing action. This in-

teraction becomes collaborative when the presenter accepts 

the transfer by touching the object on the shared display. Our 

transient display sharing technique combines in-air pointing 

toward a target shared display with device orientation to in-

dicate sharing mode while the device is held up.  

Such touch + air gesture interactions we believe represents 

a novel design space for lightweight, socially acceptable, 

proxemic [3] interactions within a society of heterogeneous 

devices and displays [4]. 
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The contributions of this paper are: 

- The design of a system to support co-located, small group 

meetings of development teams that leverages touch + air ges-

ture interactions with the objective of making common tasks 

more democratically accessible and reducing sharing costs 

- The design of a set of novel and robust cross-device inter-

action techniques, which include air gestures with the goal 

of being socially acceptable for business use 

- An initial pilot evaluation of the system with 9 profes-

sional developers that reports on initial qualitative data on 

perceived usability and social acceptability  

RELATED WORK 

Proxemic Interaction 

Ballendat et al. [3] explored proxemic interactions, in which 

the spatial relationships between users, their devices and a wall 

display affect what is shown on the wall display. By bringing a 

media player closer to the display, more media files from that 

device are shown on the display. The user can also point at the 

display using tracked physical items, which the system re-

sponds to differently than if the user points with their hand. 

Vogel at al. [5] explored public ambient displays in which the 

user‟s distance to the display affected what was shown and 

what interactions were available; when within 40” of the dis-

play, the user may perform flick gestures in the air which take 

into account hand orientation to browse and make selections, 

and when at the display they can use direct touch to make se-

lections. After a pilot survey (see below) indicated users would 

not feel comfortable performing air path gestures in a business 

meeting, we decided similar techniques would not be a good 

fit for our scenario. We extend these designs by using hand 

posture to control touch gesture mode while at the display.  

Intelligent Rooms and Ubiquitous Computing 

Various intelligent room projects have investigated ubiqui-

tous computing environments that incorporate multiple users, 

devices and displays, such as [6] [7] [8] [41] [42] and [9]. 

Many use WIMP-based interactions to transfer data, rather 

than using air and touch gestures together to transfer content 

between devices, for example. EasyLiving tracked a user‟s 

computing session and as they walked around the space, 

opened the live session on a nearby display [10]. Rekimoto 

[11] explored using a handheld device in conjunction with a 

pen while working at a digital whiteboard - much like a paint-

er‟s physical palette: to switch modes and enter text; [12] 

explored multiple computer user interfaces that included drag 

and drop actions between devices. [39] explored networking 

protocols used in conjunction with sensors to discover nearby 

devices and their relative positions to the user‟s device. 

Sharing with Direct Touch 

A number of systems explored group collaboration involving 

a whiteboard and data sharing. WeSpace [13] aided astro-

physicists in collaborating on group work by providing a 

touch table, onto which multiple laptop screens could be 

remotely shared. Users could overlay screens to identify dif-

ferences, and once aligned, could also be shown on a high-

resolution passive wall display. We extend this work by ex-

ploring methods for sharing content fragments via cross-

device interactions. Systems have also explored using hand 

held displays to hold private information that is not shown on 

a public display, and remote control shared displays [14].  

LightSpace [15] allowed users to transfer content between 

two adjacent surfaces by touching one and then the other. 

LightSpace also used the body as a display by projecting a 

dot on the user‟s hand to represent a carried object. We ex-

tend these techniques to allow users to interact from a dis-

tance and delimit air interactions with touch. Dynamo [16] 

enabled collaboration using explicit controls for sharing and 

privacy. [17] explored using PDAs and command buttons to 

transfer content. For very large wall displays, a user‟s phone, 

tablet and laptop may not have enough screen area to provide 

a natural transfer experience using drag/drop via proxy ap-

proaches. Virtual Shelves [18] explored combining touch 

and orientation sensors on a phone to access virtual spatial 

locations around a user. Chucking [40] combines touch with 

accelerometer input on a phone to allow a user to physically 

“toss” an object to discrete locations on another display. 

Multimodal Manipulation 

“Put-that-there” [19] combined arm tracking with speech 

recognition, allowing multi-modal interactions in a virtual 

environment. We feel speech would disrupt the natural con-

versation of meetings, so we opted not to use it. [20] pro-

vides a quantitative study of multi-modal interfaces using 

pen and speech and also provides a more detailed set of re-

lated work in this area. As Hands-On Math [21] explored 

concurrent touch and pen on one device, we explore combin-

ing touch + air gestures to form novel, hybrid interactions. 

Remote Pointing and Manipulation 

The Nintendo Wii [22] provides the user with a handheld 

controller that is partially tracked via accelerometers and an 

embedded infrared camera. The limitation of this approach 

is that it requires specialized controllers, which do not have 

a local display and may get lost. We instead explore con-

troller-less air gestures combined with optional touch 

screen devices that the user would normally carry.  

Charade [23] explored air gestures for controlling slide 

presentations; gestures were delimited by the user pointing at 

the screen, e.g. motion left to right to advance slides; a data 

glove allowed the system to sense finger posture as well. For 

a broader survey of design issues in spatial input, including 3-

D and virtual reality input, we refer to [24]. A number of 

techniques have been developed for selecting remote tar-

gets on large displays. For example, Gesture Select [25] 

overlays dynamically assigned gestures on targets. When 

the user flicks in their direction with a pen, he can select 

the remote targets by continuing the initial mark with that 

gesture. As this is not the focus of the present work we re-

fer to [25] for a more complete summary of techniques in 

this area. Our tertiary display transfer technique differs 

from these in that it combines air pointing and touch input. 

Software Design Sketching 

A number of systems have explored collaboration and 

touch input for software engineering. Calico [26] let users 

sketch software models early in the design process with a 



 

 

pen. CodePad [27] explored using a Tablet PC as an auxil-

iary display for a desktop coding environment. 

Close-Proximity Sharing 

A number of techniques have explored using physical touch 

to transfer objects. For example, Pick-and-drop [28] ex-

plored using a pen stylus to transfer content between devic-

es by tapping on each, [43] explored a similar technique 

with touch. BlueTable [29] allowed a user to place a de-

vice, such as a smart phone on a table, and identify it via a 

vision and networking handshake, to show content such as 

photos from the device around the phone. 

Our gestures are not fully self-disclosing. An online learn-

ing system, such as GestureBar [30], might be used to dis-

close the available gestures in the system. 

DESIGN OVERVIEW 

Requirements and Needs of Developer Meetings 

Software developers routinely hold meetings in which they 

work together to sort, filter, edit, and categorize collections of 

digital objects. Examples include Scrum meetings, in which 

Agile teams rank and assign work items, and bug triage meet-

ings, in which teams assign priority and severity to bugs. The 

formal structure of these meetings is often punctuated by mo-

ments of open-ended discussion and whiteboarding. Today, 

these meetings are typically held in a conference room with a 

projector that connects to a single device. This prevents demo-

cratic access to digital objects and forces one attendee to act as 

the group secretary, which can lead to awkward moments of 

remote control (“Can you open that one? No, up one more.”). 

Although attendees often bring their own devices containing 

relevant digital objects, they seldom switch the projected de-

vice or move objects between devices as the operations are 

prohibitively expensive. Switching devices or information 

spaces typically interrupts meeting flow, distracting from the 

subject matter, a switching overhead problem. Indeed, as a 

coping strategy to keep meetings democratic and low-

overhead, many Agile teams prefer to use pin boards with note 

cards containing hand-written copies of digital information. 

Although Code Space focuses on development teams, many 

of their meeting problems may occur generally with infor-

mation workers. We focus on developers to allow us to ex-

ploit the well-defined structure of their team artifacts, the 

frequency and formal nature of their meetings, and their high 

level of experience with technology. While many meetings 

today may include remote participants, our focus in this work 

is on improving the experience of collocated users, as a 

complement to the many techniques from CSCW that sup-

port remote participants. 

Design Goals 

Our primary design goal is fluid, democratic sharing of 

content on a common display. To shape this design we 

identify six design principles, summarized in Table 1. In 

the evaluation, we seek to gain initial qualitative data to 

explore these principles in the context of a working system, 

gain feedback on the design of the system itself.  

Skeletal tracking-based interfaces to date have generally 

either used skeletal tracking alone or in combination with 

voice. While these interaction styles have been successful in 

games and virtual reality, they have 3 properties which make 

them inherently problematic for business meetings: extensive 

use of arm/hand waving which may not be socially accepta-

ble; imperfect recognition rates; and a lack of self-disclosure 

of the available interactions. We believe that this is a signifi-

cant barrier, which must be solved for any system in this 

space intended for business use. Indeed, [31] found that ges-

tures that required participants to perform large or noticeable 

actions were the most commonly disliked, and also highly 

unusual gestures, uncomfortable gestures, and gestures that 

could interfere with communication were also problematic. 

To investigate social acceptability, we conducted a prelimi-

nary, open-response survey of 42 professional developers at 

a large software company in North America (mean age 36.5, 

S.D. 8.39, 3 female); 88% own a smart phone, 21% own a 

tablet and 62% of participants own a body tracking system 

(e.g. Xbox 360 Kinect). 98% reported they would feel com-

fortable using a touch display in a meeting, 93% reported 

comfort with interacting by pointing at the display from the 

audience, 80% felt comfortable with the prospect of perform-

ing small hand motions such as holding up a palm, making 

“a peace sign,” etc. Notably only 29% felt comfortable mak-

ing larger body motions, such as sweeping an arm across 

their body; respondents described this as potentially “embar-

rassing,” hitting their “comfort limit,” “distracting” and “sil-

ly.” This initial survey supports our hypothesis that users are 

willing to use air interaction in meetings, but not if it in-

volves substantial or extended motion. 

Indeed, 95% of respondents said they would feel comfortable 

using a tablet or touch laptop to interact with the shared dis-

play; 80% said they would feel comfortable using a smart 

phone to interact with the shared display; of the 20% that did 

not, 2 participants mentioned concerns regarding battery life, 

2 said they would consider it but it would depend on the spe-

cific UI used, while the remaining participants were con-

cerned about the comparatively small screen size.  

In a multi-user environment with interaction from a distance, 

we feel it is important to make manifest who is performing 

an action. For instance, it could be jarring if objects begin 

moving on the shared screen without knowing who is mov-

ing them. Using touch-enabled devices for remote manipula-

tion of the shared display is both direct and precise. Howev-

er, the personal nature of such interactions obscures the ac-

tor, which in turn interferes with users‟ normal social skills 

for managing contention for a shared display. We believe the 

Design Principles 

Principle 1 Everyone can interact with the shared display, from anywhere in 
the meeting space, with any device they bring. 

Principle 2 Interactions should be socially acceptable and should not cause 
embarrassment or distraction. 

Principle 3 Each modality should have a separable use. 

Principle 4 Interactions should seamlessly span modalities and devices, 
forming cross-device gestures. 

Principle 5 Interactions should be manifest to participants to create aware-
ness of actions. 

Principle 6 Cross-device interactions should use simple grammars to reduce 
the potential for error and learning hurdles. 

Table 1. Our design principles for Code Space. 



 

 

key to fixing this problem is to use multi-touch and air point-

ing and postures together in hybrid interactions, to leverage 

the strengths of each. Specifically, we use skeletal tracking to 

specify modes and operands, using simple, familiar motions, 

like pointing; we confirm and complete actions using touch 

input, where the interaction is more socially acceptable and 

precise. In the meeting context, we rejected the use of speech 

because of the potential for distraction and ambiguity. 

 

Fig. 2. Our Code Bubbles [32] implemented in Visual Studio. 

DESIGN 

Using the Code Bubbles Metaphor 

For our information space, we implemented Code Bubbles 

[32], a canvas (Fig. 2) that displays task-specific subsets of a 

software project, in particular, individual code methods, bug 

reports, sticky notes, and diagrams, each in their own “bub-

ble.” This approach was found to scale to show 11-17 meth-

ods side-by-side unclipped at 1920x1200 (our resolution) in 

a typical case analysis [32]. We added basic touch control so 

that the user can move bubbles by touch-dragging, resize 

bubbles through pinching, and pan the canvas by touch-

dragging the background. Although our display does not 

natively recognize pen input, we provide a mode in which 

touch (with a finger or passive stylus) creates ink. Our im-

plementation is an extension of Visual Studio, which gives 

the user full editing and debugging capabilities through the 

Code Bubbles interface. Code Bubbles runs on both the 

shared display and standard computers, such as a touch lap-

top (see below). On the mobile phone, we created an app for 

use in Code Space that supports the interactions below and 

allows a small number of objects to be viewed and edited. 

Interacting from a Distance 

To support our goal of democratized input, we allow users in 

the audience to interact with the shared display using what-

ever they brought with them, from nothing (just their hands 

and arms), to a touch smart phone, to a touch-enabled laptop. 

Pointing with the arm 

When an audience member points at the display, skeletal 

tracking identifies the gesture and displays a cursor on the 

shared display. Because of the low resolution of the Kinect 

hardware, we calibrate the center point of the display to be 

aligned in absolute coordinates, however, outward from 

this point a gain factor of less than one is applied to create 

greater precision. In a production system, with greater reso-

lution, absolute pointing could potentially be used. Skele-

ton tracking segments the hand, which is then tracked by 

averaging the depth map in a radius surrounding this point.  

 

Fig. 3. Pointing + manipulating with hand postures and 
skeletal tracking. 

Manipulating with the arm 

Users can manipulate objects by forming a flat palm posture 

with their hand (Fig. 3), with the fingers bunched and the 

palm facing the shared display. This switches the system into 

drag mode, indicated by a cursor change, until the user ends 

the posture. We experimented with this as a deviation from 

our principle of touch-delimited interaction so that users 

could try both alternatives and comment on the difference.  

Pointing and manipulating with the arm + phone 

As an alternative for remote manipulation, a user can point 

at the shared display with a touch-enabled smart phone 

(Fig. 4). Based on skeletal tracking, a cursor appears on the 

shared display. To drag an object, a user points at it, touch-

es anywhere on an unused portion of the phone to begin 

dragging and releases the touch to stop. This technique 

combines the two devices/modalities through wireless net-

working to create a cross-device interaction. If the phone is 

not raised up, or the user does not press the icon, no action 

will occur. Depth images of a user‟s palm and a user hold-

ing a phone (see below) are similar, so our prototype dis-

ambiguated via phone lock state, accelerometer activity 

greater than a threshold, phone touch contact, and user 

pointing; detailed signal processing could be used to dis-

ambiguate multiple phones, and to provide more robust 

recognition. 

 

Fig. 4. Pointing and manipulating with a touch-enabled 
phone. 

Annotating temporarily with the arm + phone 

To augment pointing, a user adds temporary ink by pressing 

and holding an ink icon on the phone. While the icon is 

pressed, the user‟s arm movements can draw annotation 

marks, such as lassos, underlines, etc. When the user releases 

contact, the ink disappears. Our goal is to allow users to vis-

ually accentuate features onscreen; we expect tracking preci-

sion is too low to write valuable annotations. For permanent 

annotations, the user can ink directly on the shared display. 

Gesturing from the audience with pointing + touch 

Air gestures have several inherent problems: (1) accidental 

activation: since systems capture all user motion, every ges-

ture may be interpreted by the system whether or not it was 



 

 

intended [23], (2) segmentation ambiguity: gestures are by 

nature continuous, making them difficult to segment [23], and 

(3) tactile response: purely air gestures do not provide tactile 

response; while pressing a finger and thumb together does 

provide tactile response, this may be done inadvertently. Giv-

en these challenges, and the social acceptability issues dis-

cussed above, we sought a design to address these problems. 

 

Fig. 5.  User points phone at shared display, extending their 
arm, thus entering gesture mode, then dwells showing ges-
ture disclosure overlay (left), performs flick right gesture 
(center), screen animated pans to the right (right). 

Users may gesture from the audience to execute commands 

via cross-device interaction (see Fig. 5). However, rather than 

using air gestures for command input, we use skeletal tracking 

to set (1) touch gesture mode on the user‟s device (phone or 

touch laptop), which is indicated by a visual overlay that also 

discloses available gestures after a dwell period, and two spa-

tial operands: (2) which remote shared display to control, and 

(3) a spatial location on that remote display (optional, but 

available to the command). Note that air gestures do not actu-

ally execute commands, removing the possibility for acci-

dental activation. Instead, once gesture mode is set using skel-

etal tracking the user executes actions by performing touch 

gestures on their device. We considered using touch-based 

icons on the phone, however when held at arm‟s length these 

may be harder to see, require looking, and may be accidentally 

pressed. Given that gesture disclosure is shown if the user 

dwells, we feel the system affords sufficient approachability. 

We provide a set of rectilinear mark-based gestures [37], 

which perform a variety of commands, including controlling 

the debugger (e.g. start, step into, step over, step out, etc.). 

SHARING OBJECTS 

We provide several interactions to allow objects to be per-

manently transferred between the shared screen and mobile 

device and one for sharing objects temporarily. 

Object transfer with pointing + touch gestures 

Users can push/pull objects to/from their phones using 

cross-device gestures. Because smart phones are small and 

light enough to hold in one hand, the user may perform the 

transfer either unimanually or bimanually (analogous to the 

touch laptop, see below). With the unimanual approach, 

users points the phone at the shared display to specify an 

object of interest and then flick down with the thumb on the 

phone‟s touch screen to pull that object onto the phone.  

After the transfer, a scaled-down version of the object ap-

pears on the phone. The user may pinch to resize and single-

touch to reposition this proxy. A context menu also appears, 

offering various operations that can be performed, such as 

edit (in the case of a bug bubble, for example, the user may 

edit its priority, status, etc.), delete, save, etc. Once the object 

has been copied to the phone and the context menu is open, 

the user no longer needs to point the phone at the display, but 

can interact with the local object at her leisure. The user can 

then push objects back to the large display by pointing the 

phone at a location they would like to send it to, and then 

flicking up on the touch screen with their thumb (see Fig. 6). 

 

Fig. 6. Audience member pushes content to a shared dis-
play using cross-device interaction with touch and air point-
ing, appears as package (see below). 

To push objects from the touch laptop (Fig. 7) or tablet to the 

display, the user points at the location on the display where 

they want the object to appear. This causes the tablet/laptop to 

enter gesture mode, which is indicated with a semi-transparent 

color overlay, text and gesture disclosure icons. While in this 

mode, the user flicks up (toward the display) with their other 

hand on each of the objects to send. To pull objects from the 

display to the tablet/laptop, the user points at an object on the 

shared display, and then uses the other hand to flick down on 

the tablet at the location where they would like to place it.  

 

Fig. 7. Pulling content from shared display to a touch laptop. 

We considered an order-driven grammar (without speech 

input), similar to “Put That There” [19], in which the order 

of the objects determines the direction of the transfer. 

However, in initial pilot Wizard-of-Oz testing with 4 users, 

3 users said they felt they were likely to make a mistake 

and accidentally perform the action in the wrong order. 

This lead us to the directional gesture which unambiguous-

ly controls the direction of the transfer. 

 

Fig. 8. User previews a package and then opens it. 

Light-weight permission to share 

In initial pilot testing, users felt that, in general, social protocol 

would dictate permissions for when it is acceptable to place 

objects in the presenter‟s display. However, participants men-

tioned scenarios where this might be “too open,” e.g., in larger 

meetings or meetings in which participants have just met. To 



 

 

Fig. 10. Two pre-
senters. 

help encourage sharing in these environments, we added 

the package metaphor (Fig. 8). When the package metaphor 

is enabled, the user transfers an object to the display, a 

package icon appears as a surrogate for the object. If the 

user sends several items in sequence, they are grouped into 

a single package. The presenter hovers over the package to 

reveal its contents. If and when the presenter wants to show 

the transferred objects, she taps on the package to open it, 

which effectively makes transfer a cooperative gesture [33]. 

Transient Sharing with pointing + accelerometers 

In other scenarios, users may want to briefly show an object, 

the equivalent of holding up a piece of paper to the group. 

For instance, in development meetings, it is common for a 

question or problem to arise, at which point one user will use 

a laptop to work asynchronously to find an answer. Sharing 

the answer allows discussion to continue on that topic. 

To transiently share from a phone, the user points the phone 

at the display at arm‟s length, and holds it perpendicular to 

the floor (Fig. 9), much like holding a piece of paper out to 

the group. While the phone is held in this position, the con-

tents of the phone‟s screen are shown on a temporary overlay 

on the shared display. When the user puts the phone down, 

the overlay is dismissed. A presenter, however, can decide to 

make the phone contents a permanent part of the display by 

dragging the overlay, which snaps the content into a bubble 

that begins dragging with the presenter‟s contact. 

 

Fig. 9. User working with a 
mobile phone normally 
(left). User holds phone at 
arm’s length and orients 
the phone vertically, much 
like holding a piece of pa-
per up to the group. While 
this is maintained, the 
phone’s contents is shared 
transiently with the group. 

Users can also transiently share the contents of a tablet or 

touch laptop. However, since this form factor is heavier, we 

do not expect users to hold them up. Instead, users hold 

their arm out at the display, with the palm flat, perpendicu-

lar to the floor, and simultaneously touch the display. 

While this action is maintained, the content remains shared. 

As with the phone scenario, the presenter can drag content 

out of the overlay onto the display to keep it permanently.  

Peer to Peer Transfer 

Users can use similar gestures for peer-to-peer transfer of 

objects. On a laptop or tablet, the user points to her peer 

with one hand and flicks with the other hand to send an 

object. On the mobile phone, the gesture may be unimanual 

or bimanual. In the peer-to-peer scenario, pushing an object 

to a peer (flick up) is allowed, but pulling an object (flick 

down) is not, for privacy reasons. We hypothesize users 

may feel differently about pointing fingers and devices at 

their peers during meetings; we explore this point in a pilot 

study (see below). If users are seated next to one another, 

pointing is infeasible. Instead, established techniques de-

signed for very short range sharing, such as Bump [34], 

Stitching [35], and Pick-and-drop [28] could be used. The 

package metaphor (see above) completes transfers. 

Presenter sharing from display to audience 

The presenter can also transfer objects to the audience, either 

to a specific user or to the whole group. To send to a single 

person, the presenter points at her, at which point a screen 

overlay (disclosing the available gestures as before) is shown 

around the presenter indicating they may swipe up on the dis-

play to send an object.  As above, we wanted to determine user 

comfort levels with pointing at someone, so we explore this in 

the pilot evaluation (see below). To send to everyone in the 

audience, the presenter may point in the direction of the audi-

ence, but at the ground. The same overlay appears to indicate 

the mode, but includes visuals to indicate that this will broad-

cast to the group. Since we anticipate presenters may often 

turn to face the audience and gesture with their hands, we only 

show the mode overlay if the presenter‟s other hand is near the 

display. This design does require the presenter to turn their 

head during the interaction due to field of vision limits, how-

ever we expect that the interaction‟s brevity and its consisten-

cy with other transfer actions largely balances this tradeoff. 

ENRICHING THE DISPLAY WITH SKELETAL TRACKING 

In addition to using skeletal tracking to allow cross-device 

interaction, we also use it to enhance the experience of us-

ing the shared display. 

Sensing Social Context  

Using depth cameras and skeletal tracking, the system is 

aware of how many users are at the board and in the audi-

ence. We use this data to detect social context to make cer-

tain interactions easier and to eliminate some usability prob-

lems. We sought to keep the system as simple as possible, 

and therefore as robust/predictable as possible – ideally only 

identifying unambiguous context. We provide 5 modes based 

on how many presenters and audience members are present: 

Ambient Display Mode: no presenters, no audience. This 

mode clears after a timed delay of two minutes when a user 

enters the space or if a user interacts with the shared dis-

play. The ambient display shows bug counts for team 

members, and a calendar of team meetings. Users walking 

by can transfer calendar items onto their phone. 

Single Speaking Presenter: one presenter facing the audi-

ence and away from the display. We hide UI elements sup-

porting presenter, such as posture palettes, semi-transparent 

panning bar, etc. since the presenter is not looking at them 

and they obscure the audience‟s view of the content. 

Single Working Presenter: one presenter facing the display 

enough to see it. Supporting present-

er UI is shown. 

Two or More Working Presenters: 

Because we allow users to pan and 

zoom the display, this creates the po-

tential for contention issues when two 

or more presenters work concurrent-

ly. To solve this problem, we auto-

matically split the display in place 

when multiple users are present, 



 

 

each user accessing a separate, pannable view of the same 

underlying content (Fig. 10). 

Audience Only (Working Meeting): In this scenario, the 

package metaphor will break down since no one is at the 

display to open it. Thus, packages automatica lly open in 

this mode.  

 

Fig. 11. 

Sending con-
tent to a ter-
tiary display 
with touch and 
air pointing.  

Tertiary Display 

Wall displays inherently offer a height zone that is comforta-

ble to reach for adult users of average height. Touching tar-

gets outside this range may be uncomfortable. To experiment 

with expanding the size of the display above the zone which 

is comfortable to reach, we added a passive, front-projected 

tertiary display occupying a zone from 2 to 2.5 meters above 

the floor, situated immediately above the touch display. 

While users cannot naturally reach this space through direct 

touch, we allow users to reach it remotely using touch-

delimited air pointing. The tertiary display acts like a sliding 

chalk board. Users can send content to it by pointing at it and 

then performing a swipe up on the shared display; performing 

a swipe down reverses the direction of the transfer (Fig. 11). 

Adding Content with Posture Palettes 

Toolbars can be ineffective on large displays as they may re-

quire users to walk to reach distant commands [25]. We initial-

ly considered techniques which involve contact with the dis-

play, such as touching on the background with one finger, to 

open a context menu. However, in a whiteboard environment, 

the display may become filled with content so as to make this 

difficult. We also considered using, for example, multiple fin-

gers (three, since 1-finger and 2-finger interaction is already 

used), or perhaps a palm print similar to [21], however this 

incurs several issues: (1) palm rejection, as the posture is as-

sumed, stray contacts may cause inadvertent direct manipula-

tion such as movement/resizing of underlying objects, and (2) 

increased friction, if the user needs to drag the palette, sliding 

three fingers or a palm across the display incurs a greater force 

of friction on the user‟s hand; in pilot testing 1 user described 

this, “I've always disliked touch screens made of [materials 

like this] because your fingers stick [when dragging].” 

We developed Posture Palettes, which utilizes hand pos-

tures in the hover state to address these issues. The user can 

open a tool palette of available content to add to the work-

space, in situ at any time by forming an open palm with 

spread fingers (see Fig. 12) in their non-dominant hand. 

While this posture is maintained, the tool palette will remain 

open and continue to track the (projected) position of the 

user‟s hand. Inspired by ToolGlass [36], this allows the user 

to reposition the tool palette as needed without touching the 

display, bringing it closer to the dominant hand when need-

ed, at which point the dominant hand can drag an item out to 

place on the display. The user moves the palette away when 

unneeded or changes her hand posture to dismiss the palette 

completely. This follows our design principle that touch per-

forms an action, whereas posture changes modes, thereby 

associating the intentionality with an explicit and well-

defined touch. We also offer unimanual operation; the user 

forms the open palm posture and then taps on the screen with 

any finger of that hand to pin the palette in place. The user 

can then use the same hand to drag out content as needed. 

 

Fig. 12. 

User forms the open-palm + 
spread fingers posture while in 
the hover state, opening the pos-
ture palette to the right of their 
palm (top). 

User drags the note icon out of 
the palette with their other hand 
to create a note bubble (middle). 

User stops forming the posture, 
dismissing the posture palette 
(bottom) 

 

Posture-Moded Touch and Pen Gestures 

We also explored using hand postures while hovering over 

the display to control an explicit gesture mode. A well-

known problem for touch/pen-based gestures is how to de-

termine when the user is in gesture mode; Li et al. found that 

the most efficient method of 5 tested for moding pen-based 

gestures was to press a button with the non-dominant hand. 

Inspired by this, but faced with the reality that the user might 

be far from such a button on a large display, we opted to use 

non-dominant hand posture to control gesture mode. 

We use the same palm-flat, fingers-spread posture (see Fig. 

13) for gestures as for the palette, which means that users 

only need to learn a single posture. While this posture is 

held, the area immediately surrounding the presenter (that is 

not used for the visual feedback of the menu) changes color 

to indicate that gesture mode is active, and mode feedback 

appears underneath and tracks the user‟s hand. The user then 

performs a touch or pen gesture with her dominant hand. The 

user only needs to hold the posture long enough for the dom-

inant hand to initiate contact-down, at which point the sys-

tem will lock into gesture mode until contact-up from the 

dominant hand, even if the user stops holding the posture 

with the dominant hand. This technique need not be bi-

manual, the user can initiate gesture mode in the hover state, 

and then simply contact one finger of the same hand with the 

display to begin executing a gesture. Note that while the 

same posture is used to invoke pallettes and gestures, it is 

contact by the dominant hand on an area of the screen that is 

not the pallettes (most of the screen area) that distinguishes 

between making a posture selection or a gesture invocation. 

To disclose the set of available gestures, we use a marking 

menu [37], which appears if the user dwells at the beginning 

of the gesture. Expert users can immediately start executing 



 

 

the gesture, and the menu will not appear. The gesture set is 

shared with the remote audience gesture set (see above). 

 

Fig. 13. Users hands in the 
inactive state (top). User 
forms open-palm gesture with 
left hand, entering gesture 
mode, indicated by a semi-
transparent screen overlay 
and red shadow behind user's 
posture hand (middle). User 
touches down on the back-
ground to gesture; by pressing 
and holding, marking menu 
disclosure opens to guide the 
user through the available 
gestures (bottom). Posture 
pallettes are hidden when the 
user performs a gesture. 

Workflow Templates 

Many development meetings have a formal structure that 

amounts to categorizing a set of digital objects. Examples 

include assigning priorities to bugs, partitioning work among 

developers, and ranking a set of features to implement. To 

support this activity, we added light-weight workflow tem-

plates, which are based on the concept of buckets. Users can 

drag bubbles into buckets, at which point automatic layout 

assistance will resize and lay out the bubbles in the bucket to 

fit. Each workflow template provides the user with different 

visual arrangements of buckets, such as grids, Venn dia-

grams, sequence diagrams, etc. (see Fig. 14, 15). 

 

Fig. 14. User drags a new bubble into a workflow template 
bucket. 

 

Fig. 15. Workflow template layouts. 

Users can also move bubbles between buckets or drag them 

back onto the main workspace at which point they snap back 

to normal size. Users can also zoom in on a specific bucket 

to examine its contents in isolation. Since each template is 

not tied to a specific task, users can appropriate them as 

needed. We expect that they can provide value to users for 

tasks which involve sorting, categorization, or comparison. 

TECHNICAL IMPLEMENTATION 

Hardware 

We set up Code Space in a lounge in a building of a large 

North American software company. Our shared display is a 

PanelWorx 42” 1920x1200 screen with two-touch infrared-

based input. Our depth cameras are Kinects, suspended 

from the ceiling. For our user study we provided two mo-

bile devices: a Samsung SGH-i917 running Window Phone 

7; and a touch and pen-enabled HP EliteBook 2740p tablet 

PC, running Windows 7. 

Cross-Device Interaction Recognition 

Primary skeleton tracking is accomplished using an Xbox 

360 hardware development kit connected to a Kinect sensor. 

Hand posture recognition is identified using simple heuristic 

approaches that compute the average number of radial gaps 

(between fingers) on a hand. Other more robust approaches 

should be considered in a production system. Data from mul-

tiple remote devices, such as Xbox 360 development kits, 

touch laptops, smart phones, etc. is sent via network to a 

machine connected to the shared display and tertiary display, 

where recognition of cross-device interactions is performed. 

Technical Challenges  

Stable project transfer Sharing development project files stably 

would ideally require transferring not just the necessary files, but also the rest 
of the project and its dependencies so that the recipient could perform navi-
gations as needed (e.g. Go to Definition, Find All References, etc.). A possi-
ble solution could be to check in a new branch/shelveset in the repository for 
the current share; the recipient would then automatically check out this 
shared branch to complete the transfer. 

User identification/tracking We currently use the Kinect SDK to 

perform facial recognition for users in the audience; however this is currently 
imperfect in that users must face the camera, and the system can lose track 
of users under various ambiguous circumstances. We believe that additional 
sensors coupled with improved recognition software could address this issue 
in the future. 

Device address discovery Our implementation “hard-codes” device 

network addresses to identities; in a production system a robust mechanism 
is needed to identify which devices are in the room and what their network 
addresses are. Prior work has combined computer vision with BlueTooth 
short range wireless [29], active optical emissions from the device which is 
identified by cameras [38], etc. 

Device identification/tracking (optional) This issue is optional, 

but is worth discussing. We currently assume that when a specific user, say 
Jane, points at the screen, that she is currently in possession of any devices 
in the room to which she owns/is logged into. In an ecologically valid envi-
ronment, this may not be the case, e.g. Jane lends her laptop to Mark. To 
address this issue, the system must identify which devices a user is actively 
using, perhaps via scene analysis or cameras on the device.  

Table 2. Technical challenges   

Device Discovery, Tracking and Project Transfer 

This paper is intended to explore the design and usability of 

techniques for sharing, and potentially motivate further 

technical development in the area of discovery, handshake 

and data transfer. As such, our implementation does not 

fully address the following issues, which we leave to future 

work, and which we believe our pilot evaluation now helps 

to motivate. We discuss possible known and novel ap-

proaches to each issue in Table 2 (see above). 

PILOT EVALUATION FEEDBACK AND DISCUSSION 

We recruited 9 full-time, professional developers (mean 

age 39, S.D. 10.5, 1 female, 8 right-handed) from a large 

software company in North America, who reported an av-

erage of 16 years of professional experience. All partici-

pants worked in development teams, with mean size 4.5, 

with 5 developers using an Agile development approach. 

We ran each participant singly in a simulated meeting room 

with two experimenters, which provided a controlled, three-

person social environment, while avoiding group think that 

might be seen with multiple participants. While we ran partic-



 

 

ipants singly, users still interacted in a multi-user environment. 

The experimenters alternated asking questions and speaking 

task prompts and short, pre-written feature descriptions. For 

those tasks that required two users, such as opening a package 

sent to the display or peer-to-peer transfer, the experimenter 

acted as a second user. After brief instruction, participants 

used each technique on a short representative activity, includ-

ing code review and bug triage. The second experimenter tran-

scribed the participants responses and periodically asked the 

participant usability questions. Each participant completed a 

demographic pre-questionnaire and a post-questionnaire to 

provide ratings and comments on the techniques. Each session 

lasted one hour; participants received a lunch voucher. 

Overall 

Overall, participants were quite positive about the system 

(“this is awesome,” “cool”, “this is Minority Report stuff, I 

love it”). Participants liked being able to share and interact 

remotely from the audience (“everyone can participate”). 

Participants saw value in being able to annotate, categorize 

and share digital artifacts in a whiteboard environment. 

Social Acceptability 

In general, despite the novelty of the interaction techniques, 

participants felt they were socially acceptable for meetings 

and they would feel comfortable performing them with their 

teams. We did not receive any concerns, even when prompt-

ed, with the exception of peer-to-peer transfer which we hy-

pothesized might be seen differently (see below). Partici-

pants mentioned that the interactions were not significantly 

different from pointing which they already do, with one par-

ticipant saying “this is the same as drawing at the white-

board” when referring to posture palettes. Indeed, partici-

pants did not find any of the posture-based techniques to be 

socially unacceptable. We attribute this to the fact that most 

of the motion of the gestures was performed via touch, and 

air gesturing was limited to setting modes/providing oper-

ands. As one user said about selecting commands on mobile 

phones, “This… makes it easier for me to do more gestures. I 

was thinking before [when using just air gestures] I'd have to 

stick my finger in my ear to draw things.” 

When it came to peer-to-peer sharing, 3 participants felt this 

was not socially acceptable (“pointing at someone would be 

rude”), especially among strangers. This discomfort was not 

just about pointing: “I don't feel comfortable sending in front 

of other people. They'll think it's secret or something.” While 

other participants were neutral, the participants who did not 

find it socially acceptable felt strongly about it and said he 

would rather choose the recipient from a list of meeting at-

tendees. These participants also felt that disclosing the trans-

fer to the rest of the group was not necessary. This appears to 

extends to the share with audience gestures as well, which 

shares the design. Given that a substantial minority of partic-

ipants felt strongly about this point, we recommend that for a 

production system peer to peer sharing be accomplished us-

ing an attendee list or other less obtrusive mechanism. 

Social Disclosure and Permission 

Users in general felt that in-air interactions disclosed who 

was interacting and helps social protocols to enforce trans-

fer permissions (“it's a social gesture… otherwise, it‟s like 

who put that there?”). However, there were several excep-

tions. When editing bugs on the phone, two users suggested 

adding an edit icon appear on the shared display to disclose 

the editing. One user felt that it was most important to dis-

close who was interacting when pushing content to the 

shared display, or remotely manipulating items, but unnec-

essary when pulling content to the phone from the display.  

In general, participants felt that existing social protocol 

would dictate remote control permissions, “I think people 

would be considerate,” however, 1 participant felt that they 

would want “explicit permission.” Four users asked for the 

ability to disable remote movement when needed, citing 

examples such as large meetings. 

Our only explicit support for permission is the package. All 

but one participant, as presenters, were comfortable with 

members of the audience sending content to the shared dis-

play or remotely pointing or manipulating. Indeed, they felt 

that normal social protocol and politeness would govern 

these activities. The participant who did not feel comforta-

ble was not completely opposed but said that he would pre-

fer to enable the features explicitly. Interestingly, partici-

pants wanted a permission feature for pushing new content 

to the display, but not for manipulation of existing content. 

Utility 

When asked, most users either named remote pointing or 

object sharing as the most valuable feature. All but 1 partic-

ipant saw value in remotely pointing and moving objects 

using air interaction, while 1 participant felt that walking 

up to the display would be easier than remotely moving 

objects. It appears that the cost to walking incurred both the 

time and effort needed to approach the board, as well as the 

perceived social cost; two developers mentioned that some 

“shy” colleagues might be more likely to talk while seated 

than to stand up in front of the group. Users were evenly 

split between preferring phone versus hand postures for 

remote manipulation. Some felt the phone was more effort 

to use and inconvenient in one‟s pocket, while others were 

concerned that the hand posture had imperfect recognition. 

When it came to sharing, participants were very positive, 

(“now that‟s really good,” “Huh, wow. That is really super 

cool.”) Participants commented that the cost of sharing was 

significantly reduced and that it would enable sharing that 

might be prohibitively difficult today, i.e. requiring a pro-

jector switch or creating notes/reminders to open an item 

seen at the meeting later. Participants were very positive 

about being able to pull down bugs and other detailed items 

onto the phone to review locally. Participants had a number 

of spontaneous ideas on how they might use sharing, for 

example parceling out work items, transiently sharing in-

formation to support a specific point, or performing an in-

vestigation to answer a question that came up during the 

meeting and sharing the result with the group. When pull-

ing content, participants felt that they would use the phone 

primarily for reading, and would do all but the lightest edit-

ing tasks on a laptop. Two participants suggested that they 



 

 

would also want a mouse drag-and-drop approach for lap-

tops to transfer via split screen as long as the shared display 

was not too large or high resolution to be practical. 

Usability 

For sharing grammar, participants all appeared to find the 

sharing gesture natural. Indeed, in addition to the positive 

feedback described above, there were no requests to change, 

for example, to an order-based approach. We also did not 

observe any instances where users accidentally sent objects 

in the wrong direction. We believe that the touch gestures to 

push/pull helped to obviate the need for additional order con-

straints, and created a well-defined moment of when the 

command was executed. Users also did not appear to have 

difficulty remembering the gesture directions for push/pull.  

Cross-device interaction appeared to feel natural to users, 

indeed even though interactions often spanned several devic-

es, sensors or modalities (e.g. sharing to a phone), users ap-

peared to consider them as a single interaction. Indeed, sev-

eral users were surprised to learn that some interactions in-

volved multiple separate computers/devices. Two users not-

ed that relative pointing required additional time to acquire 

targets and asked for absolute pointing. While this could be 

more intuitive, it would be more susceptible to sensor noise, 

which had been a determining factor for our setup.  

Limitations 

All participants were from a large company; our study sample 

may not generalize to other populations. The controlled envi-

ronment used also may not be representative of a full meeting 

environment with multiple users, and the controlled tasks used 

may not be fully representative. Imperfections in the prototype 

implementation, such as occasional recognition errors or im-

precision in pointing may have influenced user feedback. 

We note that to make broad conclusions about the social 

acceptability of the gestures tested, a quantitative study in an 

ecologically valid, group environment would be needed. 

However, we feel this initial qualitative pilot study is promis-

ing and motivates further quantitative study in this area. 

CONCLUSION 

We presented Code Space, a system that explores touch + air 

gesture hybrid interactions for supporting co-located, small 

group developer meetings by democratizing access, control, 

and sharing of information across multiple personal devices 

and public displays. We presented a set of cross-device inter-

actions, which use a combination of in-air gestures for social 

disclosure of commands, targeting and mode setting, com-

bined with touch for command selection and precise gestures. 

Our formative study of professional developers indicates the 

interactions are useful to developers and socially acceptable.  
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